Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 288: 23

Answer

12.5

Work Step by Step

The function $f(x)=|2x-5|=\left\{\begin{array}{lll} 2x-5, & when & 2x-5 \geq 0\\ -(2x-5) & when & 2x-5 < 0 \end{array}\right.$ $f(x)=\left\{\begin{array}{lll} 2x-5, & when & x \geq 5/2\\ -(2x-5) & when & x < 5/2 \end{array}\right.$ Apply Th.4.6 from section 4-3, Additive Interval Property $\displaystyle \int_{0}^{5}|2x-5|dx=\int_{0}^{5/2}(5-2x)dx+\int_{5/2}^{5}(2x-5)dx$ Use the table "Basic Integration Rules", p.246 $=[5x-x^{2}]_{0}^{5/2}+[x^{2}-5x]_{5/2}^{5}$ $=(\displaystyle \frac{25}{2}-\frac{25}{4})-0+(25-25)-(\frac{25}{4}-\frac{25}{2})$ $=2(\displaystyle \frac{25}{2}-\frac{25}{4})$ $=\displaystyle \frac{25}{2}$ Checking graphically - see below (work done in desmos.com). Sum of the areas of two right triangles, each with legs $2.5$ and 5, $A=2\displaystyle \cdot[\frac{1}{2}(2.5)(5))=12.5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.