Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.2 Exercises - Page 264: 37

Answer

12

Work Step by Step

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{24i}{n^2}$$ $$\sum_{i=1}^n\frac{24i}{n^2}=\frac{24}{n^2}\sum_{i=1}^ni=\frac{24}{n^2}\frac{n(n+1)}{2}$$ $$=\frac{12n(n+1)}{n^2}=\frac{12(n+1)}{n}$$ Therefore, $$\lim_{n\to\infty}\sum_{i=1}^n\frac{24i}{n^2}=\lim_{n\to\infty}\frac{12(n+1)}{n}=12$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.