Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.2 Exercises - Page 264: 42

Answer

$$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2+\frac{3 i}{n}\right)^{3}\left(\frac{3}{n}\right) =\frac{609}{4}$$

Work Step by Step

Given$$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2+\frac{3 i}{n}\right)^{3}\left(\frac{3}{n}\right) $$, so, we have \begin{aligned} L&=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2+\frac{3 i}{n}\right)^{3}\left(\frac{3}{n}\right) \\ &=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{n=1}^{n}\left[\frac{2 n+3 i}{n}\right]^{3} \\ &=\lim _{n \rightarrow \infty} \frac{3}{n^4} \sum_{n=1}^{n}\left[2 n+3 i\right]^{3} \\ &=\lim _{n \rightarrow \infty} \frac{3}{n^{4}} \sum_{i=1}^{n}\left(8 n^{3}+36 n^{2} i+54 n i^{2}+27 i^{3}\right) \\ \end{aligned} $$Since \sum_{i=1}^{n} 1=n, \ \sum_{i=1}^{n} i=\frac{n(n+1)}{2},\\ \ \ \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \ \ \sum_{i=1}^{n} i^{3}= \frac{n^{2}(n+1)^{2}}{4}$$ so, we get \begin{aligned} L &=\lim _{n \rightarrow \infty} \frac{3}{n^{4}}\left(8 n^{4}+36 n^{2} \frac{n(n+1)}{2}+54 n \frac{n(n+1)(2 n+1)}{6}+27 \frac{n^{2}(n+1)^{2}}{4}\right) \\ &=\lim _{n \rightarrow \infty} 3\left(8+18 \frac{(n+1)}{n}+\frac{9(n+1)(2 n+1)}{n^{2}}+\frac{27}{4} \cdot \frac{(n+1)^{2}}{n^{2}}\right) \\ &=\lim _{n \rightarrow \infty} 3\left(8+18 \frac{(n+1)}{n}+\frac{9(2n^2+3n+1)}{n^{2}}+\frac{27}{4} \cdot \frac{n^{2}+2n+1}{n^{2}}\right) \\ &=\lim _{n \rightarrow \infty} 3\left(8+18(1+ \frac{1}{n})+18+\frac{27}{n}+\frac{9}{n^{2}}+\frac{27}{4}(1+ \frac{2}{n}+\frac{1}{n^{2}})\right) \\ &=3\left(8+18+18+\frac{27}{4}\right), \ (as \lim _{n \rightarrow \infty}\frac{1}{n}=\lim _{n \rightarrow \infty}\frac{1}{n^2}=0)\\ &=\frac{609}{4} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.