Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.2 Exercises - Page 264: 39

Answer

$$\frac{1}{3}$$

Work Step by Step

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n^3}\left(i-1\right)^2$$ $$\sum_{i=1}^n\frac{1}{n^3}\left(i-1\right)^2=\frac{1}{n^3}\sum_{i=1}^n(i-1)^2=\frac{1}{n^3}\sum_{i=1}^n(i^2-2i+1)$$ $$=\frac{1}{n^3}\left(\sum_{i=1}^ni^2-2\sum_{i=1}^ni+\sum_{i=1}^n1\right)$$ $$=\frac{1}{n^3}\left(\frac{n(n+1)(2n+1)}{6}-2\times\frac{n(n+1)}{2}+n\right)$$ $$=\frac{1}{n^3}\left(\frac{n(n+1)(2n+1)}{6}-n(n+1)+n\right)$$ $$=\frac{1}{n^3}\left(\frac{n(n+1)(2n+1)}{6}-n^2\right)$$ $$=\frac{n(n+1)(2n+1)}{6n^3}-\frac{n^2}{n^3}$$ $$=\frac{(n+1)(2n+1)}{6n^2}-\frac{1}{n}=\frac{2n^2+3n+1}{6n^2}-\frac{1}{n}$$ $$\lim_{n\to\infty}\frac{2n^2+3n+1}{6n^2}-\frac{1}{n}=\frac{2}{6}-0=\frac{1}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.