Answer
s=0.659
S=0.859
Work Step by Step
Let S be the upper sum and s be the lower sum.
Therefore,
$s=\frac{1}{5}\Sigma_{x=0}^{5} \sqrt {1-(\frac{x}{5})^2} =
\frac{1}{5}(\sqrt {1-(\frac{0}{5})^2}+\sqrt {1-(\frac{1}{5})^2} + \sqrt {1-(\frac{2}{5})^2} + \sqrt {1-(\frac{3}{5})^2} + \sqrt {1-(\frac{4}{5})^2})=0.659$
and
$S=\frac{1}{5}\Sigma_{x=0}^{5} \sqrt {1-(\frac{x}{5})^2} =
\frac{1}{5}(\sqrt {1-(\frac{1}{5})^2} + \sqrt {1-(\frac{2}{5})^2} + \sqrt {1-(\frac{3}{5})^2} + \sqrt {1-(\frac{4}{5})^2} + \sqrt {1-(\frac{5}{5})^2})=0.859$