Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.2 Exercises - Page 264: 41

Answer

$$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{i}{n}\right)\left(\frac{2}{n}\right)=3$$

Work Step by Step

Given $$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{i}{n}\right)\left(\frac{2}{n}\right)$$ So, we get \begin{align} L&=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{i}{n}\right)\left(\frac{2}{n}\right)\\ &=2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\sum_{i=1}^{n} 1+\frac{1}{n} \sum_{n=1}^{n} i\right]\\ \end{align} Since $$\sum_{i=1}^{n} 1=n, \ \ \ \sum_{n=1}^{n} i=\frac{n(n+1)}{2}$$ so, we get \begin{align} L&=2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{1}{n}\left(\frac{n(n+1)}{2}\right)\right]\\ & =2 \lim _{n \rightarrow \infty}\left[1+\frac{n^{2}+n}{2 n^{2}}\right]\\ & =2 \lim _{n \rightarrow \infty}\left[1+\frac{1}{2}+\frac{1}{2n}\right]\\ &=2\left(1+\frac{1}{2}\right), \ \ \ \ \ (as \lim _{n \rightarrow \infty}\frac{1}{n}=0) \\ &=3 \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.