Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.2 Exercises - Page 263: 24

Answer

$$\sum_{i=1}^{n} \frac{2 i^{3}-3 i}{n^{4}} =\frac{n^3+2n^2-2n-3}{2n^3}$$ $\begin{array}{|c|c|c|c|c|}\hline 10 & {100} & {1000} & {10000} \\ \hline 0.5885 & {0.0509895} & { 0.500999 } & {0.50009999} \\ \hline\end{array}$

Work Step by Step

Since \begin{align*} \sum_{i=1}^{n} \frac{2 i^{3}-3 i}{n^{4}}&=\frac{1}{n^4}\sum_{i=1}^{n} (2 i^{3}-3 i)\ \ \text{Use } ( \sum_{i=1}^{n} k a_{i}=k \sum_{i=1}^{n} a_{i})\\ &=\frac{1}{n^4}\left(2\sum_{i=1}^{n} i^{3}-3 \sum_{i=1}^{n} i \right)\ \ \text{Use } (\sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i})\\ &=\frac{1}{n^4}\left( \frac{n^2(n+1)^2}{2}-\frac{3n(n+1)}{2}\right)\\ &=\frac{1}{n^4}\left(\frac{n^4+2n^3-2n^2-3n}{2}\right)\\ &=\frac{n^3+2n^2-2n-3}{2n^3} \end{align*} and $\begin{array}{|c|c|c|c|c|}\hline 10 & {100} & {1000} & {10000} \\ \hline 0.5885 & {0.0509895} & { 0.500999 } & {0.50009999} \\ \hline\end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.