Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.2 Exercises - Page 263: 23

Answer

$S(n)=2-\displaystyle \frac{2}{n^{2}}$ $S(10)=1.98$ $S(100)=1.9998$ $S(1000)=1.999998$ $S(10,000)=1.99999998$

Work Step by Step

$\displaystyle \sum_{k=1}^{n}\frac{6k(k-1)}{n^{3}}=$ ... the $\displaystyle \frac{6}{n^{3}}$ is constant,...$\displaystyle \sum_{i=1}^{n}ka_{i}=k\sum_{i=1}^{n}a_{i}$ $=\displaystyle \frac{6}{n^{3}}\sum_{k=1}^{n}(k^{2}-k)$ ... property: $ \displaystyle \sum_{i=1}^{n}(a_{i}\pm b_{i})=\sum_{i=1}^{n}a_{i}\pm\sum_{i=1}^{n}b_{i}$ $=\displaystyle \frac{6}{n^{3}}[\sum_{k=1}^{n}k^{2}-\sum_{k=1}^{n}k]$ $... $T4.2.3. $\displaystyle \sum_{i=1}^{n}i^{2}=\frac{n(n+1)(2n+1)}{6}$ , $... $Th4.2.2. $\displaystyle \sum_{i=1}^{n}i=\frac{n(n+1)}{2}$ $=\displaystyle \frac{6}{n^{3}}[\frac{n(n+1)(2n+1)}{6}-\frac{n(n+1)}{2}]$ ... factor out n and reduce ... $=\displaystyle \frac{6}{n^{2}}[\frac{(2n^{2}+3n+1)}{6}-\frac{(n+1)}{2}]$ $=\displaystyle \frac{6}{n^{2}}[\frac{2n^{2}+3n+1-3n-3}{6}]$ ... reduce 6 , simplify numerator.... $=\displaystyle \frac{1}{n^{2}}[2n^{2}-2]$ $=2-\displaystyle \frac{2}{n^{2}}$ $S(n)=2-\displaystyle \frac{2}{n^{2}}$ $S(10)=2-\displaystyle \frac{2}{10^{2}}=1.98$ $S(100)=2-\displaystyle \frac{2}{100^{2}}=1.9998$ $S(1000)=2-\displaystyle \frac{2}{1000^{2}}=1.999998$ $S(10,000)=2-\displaystyle \frac{2}{10,000^{2}}=1.99999998$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.