Answer
s=0.646
S=0.746
Work Step by Step
Let S be the upper sum and s be the lower sum.
Therefore,
$S=\frac{1}{5}\Sigma_{x=5}^{9} \frac{1}{x/5} =\frac{1}{5}(\frac{1}{5/5} +\frac{1}{6/5}+ \frac{1}{7/5}+\frac{1}{8/5}+\frac{1}{9/5})$
or $S= \frac{1}{5} +\frac{1}{6}+ \frac{1}{7}+\frac{1}{8}+\frac{1}{9}=0.746$
and $s=\frac{1}{5}\Sigma_{x=6}^{10} \frac{1}{x/5}=\frac{1}{5}(\frac{1}{6/5}+ \frac{1}{7/5}+\frac{1}{8/5}+\frac{1}{9/5}+\frac{1}{10/5})$
or $s= \frac{1}{6}+ \frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10} =0.646$