Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.4 Exercises - Page 192: 32

Answer

$${\text{Relative minimum at }}\left( { - \frac{3}{2}, - \frac{{41}}{4}} \right)$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^2} + 3x - 8 \cr & {\text{*Calculate the first derivative}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^2} + 3x - 8} \right] \cr & f'\left( x \right) = 2x + 3 \cr & {\text{Set }}f'\left( x \right) = 0 \cr & 2x + 3 = 0 \cr & x = - \frac{3}{2} \cr & \cr & *{\text{Calculate the second derivative}} \cr & f''\left( x \right) = \frac{d}{{dx}}\left[ {f'\left( x \right)} \right] \cr & f''\left( x \right) = \frac{d}{{dx}}\left[ {2x + 3} \right] \cr & f'\left( x \right) = 2 \cr & \cr & {\text{Evaluate the second derivative at }}x = - \frac{3}{2} \cr & f''\left( { - \frac{3}{2}} \right) = 2 \cr & f''\left( { - \frac{3}{2}} \right) > 0,{\text{ Then by the second derivative test }}\left( {{\text{Theorem 3}}{\text{.9}}} \right) \cr & f\left( x \right){\text{ has a relative minimum at }}\left( { - \frac{3}{2},f\left( { - \frac{3}{2}} \right)} \right) \cr & f\left( { - \frac{3}{2}} \right) = {\left( { - \frac{3}{2}} \right)^2} + 3\left( { - \frac{3}{2}} \right) - 8 \cr & {\text{Relative minimum at }}\left( { - \frac{3}{2}, - \frac{{41}}{4}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.