Answer
$$\eqalign{
& {\text{No inflection points}} \cr
& {\text{Concave downward}}:{\text{ }}\left( {\pi ,2\pi } \right){\text{ and }}\left( {3\pi ,4\pi } \right) \cr
& {\text{Concave upward}}:{\text{ }}\left( {0,\pi } \right){\text{ and }}\left( {2\pi ,3\pi } \right) \cr} $$
Work Step by Step
$$\eqalign{
& f\left( x \right) = \sec \left( {x - \frac{\pi }{2}} \right),{\text{ }}\left( {0,4\pi } \right) \cr
& {\text{The function is not continuous at }}x = \pi ,{\text{ }}x = 2\pi {\text{ and }}x = 3\pi \cr
& {\text{on the interval }}\left( {0,4\pi } \right) \cr
& {\text{Calculate the first and second derivatives}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {\sec \left( {x - \frac{\pi }{2}} \right)} \right] \cr
& f'\left( x \right) = \sec \left( {x - \frac{\pi }{2}} \right)\tan \left( {x - \frac{\pi }{2}} \right)\left( 1 \right) \cr
& f''\left( x \right) = \frac{d}{{dx}}\left[ {\sec \left( {x - \frac{\pi }{2}} \right)\tan \left( {x - \frac{\pi }{2}} \right)} \right] \cr
& f''\left( x \right) = \sec \left( {x - \frac{\pi }{2}} \right){\sec ^2}\left( {x - \frac{\pi }{2}} \right) + {\tan ^2}\left( {x - \frac{\pi }{2}} \right)\sec \left( {x - \frac{\pi }{2}} \right) \cr
& f''\left( x \right) = {\sec ^3}\left( {x - \frac{\pi }{2}} \right) + {\tan ^2}\left( {x - \frac{\pi }{2}} \right)\sec \left( {x - \frac{\pi }{2}} \right) \cr
& {\text{Factoring}} \cr
& f''\left( x \right) = \sec \left( {x - \frac{\pi }{2}} \right)\left[ {{{\sec }^2}\left( {x - \frac{\pi }{2}} \right) + {{\tan }^2}\left( {x - \frac{\pi }{2}} \right)} \right] \cr
& {\text{The function is not continuous for the domain of }}f\left( x \right),{\text{ at}} \cr
& x = \pi ,{\text{ }}x = 2\pi {\text{ and }}x = 3\pi \cr
& {\text{We obtain the intervals}} \cr
& \left( {0,\pi } \right),\left( {\pi ,2\pi } \right),\left( {2\pi ,3\pi } \right),\left( {3\pi ,4\pi } \right) \cr
& {\text{Making a table of values }}\left( {{\text{See examples on page 188 }}} \right) \cr} $$
\[\boxed{\begin{array}{*{20}{c}}
{{\text{Interval}}}&{{\text{Test Value}}}&{{\text{Sign of }}f''\left( x \right)}&{{\text{Conclusion}}} \\
{\left( {0,\pi } \right)}&{x = \frac{{2\pi }}{3}}& + &{{\text{C}}{\text{. upward}}} \\
{\left( {\pi ,2\pi } \right)}&{x = \frac{{4\pi }}{3}}& - &{{\text{C}}{\text{. downward}}} \\
{\left( {2\pi ,3\pi } \right)}&{x = \frac{{7\pi }}{3}}& + &{{\text{C}}{\text{. upward}}} \\
{\left( {3\pi ,4\pi } \right)}&{x = \frac{{10\pi }}{3}}& - &{{\text{C}}{\text{. downward}}}
\end{array}}\]
$$\eqalign{
& {\text{Summary:}} \cr
& {\text{There are no values at which }}f''\left( x \right) = 0 \cr
& {\text{No inflection points}} \cr
& {\text{Concave downward}}:{\text{ }}\left( {\pi ,2\pi } \right){\text{ and }}\left( {3\pi ,4\pi } \right) \cr
& {\text{Concave upward}}:{\text{ }}\left( {0,\pi } \right){\text{ and }}\left( {2\pi ,3\pi } \right) \cr
& {\text{The following graph confirms the result:}} \cr} $$