Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.4 Exercises - Page 192: 13

Answer

$$\eqalign{ & {\text{Concave upward}}:{\text{ }}\left( { - \frac{\pi }{2},0} \right) \cr & {\text{Concave downward}}:{\text{ }}\left( {0,\frac{\pi }{2}} \right) \cr} $$

Work Step by Step

$$\eqalign{ & y = 2x - \tan x,{\text{ }}\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right) \cr & {\text{Calculate the first and second derivatives}} \cr & y' = \frac{d}{{dx}}\left[ {2x - \tan x} \right] \cr & y' = 2 - {\sec ^2}x \cr & y'' = \frac{d}{{dx}}\left[ {2 - {{\sec }^2}x} \right] \cr & y'' = - 2\sec x\frac{d}{{dx}}\left[ {\sec x} \right] \cr & y'' = - 2\sec x\left( {\sec x\tan x} \right) \cr & y'' = - 2{\sec ^2}x\tan x \cr & {\text{Set the second derivative to }}0 \cr & - 2{\sec ^2}x\tan x = 0 \cr & - 2\left( {\frac{1}{{{{\cos }^2}x}}} \right)\left( {\frac{{\sin x}}{{\cos x}}} \right) = 0 \cr & - \frac{{2\sin x}}{{{{\cos }^3}x}} = 0 \cr & - 2\sin x = 0 \cr & \sin x = 0 \cr & {\text{For the interval }}\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right){\text{ }}\sin x = 0{\text{ at }}x = 0 \cr & {\text{We obtain the critical point }}x = 0 \cr & {\text{Set the intervals }}\left( { - \frac{\pi }{2},0} \right),\left( {0,\frac{\pi }{2}} \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 188 }}} \right) \cr} $$ \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( { - \frac{\pi }{2},0} \right)}&{\left( {0,\frac{\pi }{2}} \right)} \\ {{\text{Test Value}}}&{ - \frac{\pi }{4}}&{\frac{\pi }{4}} \\ {{\text{Sign of }}f''\left( x \right)}&{f''\left( { - \frac{\pi }{4}} \right) = 4 > 0}&{f''\left( {\frac{\pi }{4}} \right) = - 4 < 0} \\ {{\text{Conclusion}}}&{{\text{Concave upward}}}&{{\text{Concave downward}}} \end{array}}\] $$\eqalign{ & {\text{Concave upward}}:{\text{ }}\left( { - \frac{\pi }{2},0} \right) \cr & {\text{Concave downward}}:{\text{ }}\left( {0,\frac{\pi }{2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.