Answer
$$\eqalign{
& {\text{Inflection point }}\left( {9,4} \right) \cr
& {\text{Concave downward}}:{\text{ }}\left( {0,9} \right) \cr
& {\text{Concave upward}}:{\text{ }}\left( {9,\infty } \right) \cr} $$
Work Step by Step
$$\eqalign{
& f\left( x \right) = \frac{{x + 3}}{{\sqrt x }} \cr
& {\text{The domain of the function is }}x > 0 \cr
& {\text{Calculate the first and second derivatives}} \cr
& f\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{x + 3}}{{\sqrt x }}} \right] \cr
& f\left( x \right) = \frac{d}{{dx}}\left[ {\frac{x}{{\sqrt x }} + \frac{3}{{\sqrt x }}} \right] \cr
& f\left( x \right) = \frac{d}{{dx}}\left[ {{x^{1/2}} + 3{x^{ - 1/2}}} \right] \cr
& f'\left( x \right) = \frac{1}{2}{x^{ - 1/2}} - \frac{3}{2}{x^{ - 3/2}} \cr
& f''\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{2}{x^{ - 1/2}} - \frac{3}{2}{x^{ - 3/2}}} \right] \cr
& f''\left( x \right) = \frac{1}{2}\left( { - \frac{1}{2}} \right){x^{ - 1/2 - 1}} - \frac{3}{2}\left( { - \frac{3}{2}} \right){x^{ - 3/2 - 1}} \cr
& f''\left( x \right) = - \frac{1}{4}{x^{ - 3/2}} + \frac{9}{4}{x^{ - 5/2}} \cr
& {\text{Set the second derivative to }}0 \cr
& - \frac{1}{4}{x^{ - 3/2}} + \frac{9}{4}{x^{ - 5/2}} = 0 \cr
& - \frac{1}{4}{x^{ - 5/2}}\left( {x - 9} \right) = 0 \cr
& - \frac{1}{{4{x^{5/2}}}}\left( {x - 9} \right) = 0 \cr
& x = 9 \cr
& {\text{The second derivative is not defined at }}x = 0 \cr
& {\text{The value }}x = 0{\text{ is not in the domain of the function }} \cr
& {\text{Set the intervals }}\left( {0,9} \right),\left( {9,\infty } \right) \cr
& {\text{Making a table of values }}\left( {{\text{See examples on page 188 }}} \right) \cr} $$
\[\boxed{\begin{array}{*{20}{c}}
{{\text{Interval}}}&{\left( {0,9} \right)}&{\left( {9,\infty } \right)} \\
{{\text{Test Value}}}&{x = 1}&{x = 16} \\
{{\text{Sign of }}f''\left( x \right)}&{f''\left( 1 \right) = 2 > 0}&{f''\left( 5 \right) = - \frac{7}{{4096}} < 0} \\
{{\text{Conclusion}}}&{{\text{Concave downward}}}&{{\text{Concave downward}}}
\end{array}}\]
$$\eqalign{
& {\text{Inflection point }}\left( {9,4} \right) \cr
& {\text{Concave downward}}:{\text{ }}\left( {0,9} \right) \cr
& {\text{Concave upward}}:{\text{ }}\left( {9,\infty } \right) \cr} $$