Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.4 Exercises - Page 192: 14

Answer

$$\eqalign{ & {\text{Concave upward}}:{\text{ }}\left( {0,\pi } \right) \cr & {\text{Concave downward}}:{\text{ }}\left( { - \pi ,0} \right) \cr} $$

Work Step by Step

$$\eqalign{ & y = x + \frac{2}{{\sin x}},{\text{ }}\left( { - \pi ,\pi } \right) \cr & {\text{Calculate the first and second derivatives}} \cr & y' = \frac{d}{{dx}}\left[ {x + \frac{2}{{\sin x}}} \right] \cr & y' = 1 - \frac{{2\cos x}}{{{{\sin }^2}x}} \cr & y' = 1 - 2\cot x\csc x \cr & y'' = \frac{d}{{dx}}\left[ {1 - 2\cot x\csc x} \right] \cr & {\text{Use product rule}} \cr & y'' = - 2\cot x\left( { - \csc x\cot } \right) - 2\csc x\left( { - {{\csc }^2}x} \right) \cr & y'' = 2\csc x{\cot ^2}x + 2{\csc ^3}x \cr & {\text{Set the second derivative to }}0 \cr & 2\csc x{\cot ^2}x + 2{\csc ^3}x = 0 \cr & {\text{Factoring}} \cr & 2\csc x\left( {{{\cot }^2}x + 2{{\csc }^2}x} \right) = 0 \cr & 2\csc x = 0,{\text{ }}{\cot ^2}x + 2{\csc ^2}x = 0 \cr & 2\csc x = 0,{\text{ }}{\csc ^2}x - 1 + 2{\csc ^2}x = 0 \cr & 2\csc x = 0,{\text{ }}\underbrace {{\text{3}}{{\csc }^2}x = 1}_{{\text{No solution}}} \cr & \frac{2}{{\sin x}} = 0 \cr & {\text{For the interval }}\left( { - \pi ,\pi } \right){\text{ }}\frac{2}{{\sin x}}{\text{ is not defined at }}x = 0 \cr & {\text{We obtain the critical point }}x = 0 \cr & {\text{Set the intervals }}\left( { - \pi ,0} \right),\left( {0,\pi } \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 188 }}} \right) \cr} $$ \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( { - \pi ,0} \right)}&{\left( {0,\pi } \right)} \\ {{\text{Test Value}}}&{ - \frac{\pi }{2}}&{\frac{\pi }{2}} \\ {{\text{Sign of }}f''\left( x \right)}&{f''\left( { - \frac{\pi }{2}} \right) = - 4 > 0}&{f''\left( {\frac{\pi }{2}} \right) = 4 < 0} \\ {{\text{Conclusion}}}&{{\text{Concave downward}}}&{{\text{Concave upward}}} \end{array}}\] $$\eqalign{ & {\text{Concave upward}}:{\text{ }}\left( {0,\pi } \right) \cr & {\text{Concave downward}}:{\text{ }}\left( { - \pi ,0} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.