Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.4 Exercises - Page 192: 25

Answer

$$\eqalign{ & {\text{The inflection point occurs at }}x = 2\pi \cr & f\left( {2\pi } \right) = \sin \frac{{2\pi }}{2} = 0 \cr & {\text{Inflection point }}\left( {2\pi ,0} \right) \cr & {\text{Concave downward}}:{\text{ }}\left( {0,2\pi } \right) \cr & {\text{Concave upward}}:{\text{ }}\left( {2\pi ,4\pi } \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \sin \frac{x}{2},{\text{ }}\left[ {0,4\pi } \right] \cr & {\text{Calculate the first and second derivatives}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\sin \frac{x}{2}} \right] \cr & f'\left( x \right) = \cos \left( {\frac{x}{2}} \right)\frac{d}{{dx}}\left[ {\frac{x}{2}} \right] \cr & f'\left( x \right) = \cos \left( {\frac{x}{2}} \right)\left( {\frac{1}{2}} \right) \cr & f'\left( x \right) = \frac{1}{2}\cos \left( {\frac{x}{2}} \right) \cr & f''\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{2}\cos \left( {\frac{x}{2}} \right)} \right] \cr & f''\left( x \right) = - \frac{1}{2}\sin \left( {\frac{x}{2}} \right)\frac{d}{{dx}}\left[ {\frac{x}{2}} \right] \cr & f''\left( x \right) = - \frac{1}{4}\sin \left( {\frac{x}{2}} \right) \cr & {\text{Set the second derivative to }}0 \cr & - \frac{1}{4}\sin \left( {\frac{x}{2}} \right) = 0 \cr & \sin \left( {\frac{x}{2}} \right) = 0 \cr & {\text{On the interval }}\left[ {0,4\pi } \right]{\text{ }}\sin \left( {\frac{x}{2}} \right) = 0{\text{ at }}x = 0,{\text{ 2}}\pi ,{\text{ 4}}\pi \cr & {\text{Set the intervals }}\left( {0,2\pi } \right),\left( {2\pi ,4\pi } \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 188 }}} \right) \cr} $$ \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( {0,2\pi } \right)}&{\left( {2\pi ,4\pi } \right)} \\ {{\text{Test Value}}}&{x = \frac{\pi }{2}}&{x = 3\pi } \\ {{\text{Sign of }}f''\left( x \right)}&{f''\left( {\frac{\pi }{2}} \right) = - \frac{{\sqrt 2 }}{8} < 0}&{f''\left( {\frac{{3\pi }}{2}} \right) = \frac{1}{4} > 0} \\ {{\text{Conclusion}}}&{{\text{Concave downward}}}&{{\text{Concave upward}}} \end{array}}\] $$\eqalign{ & {\text{The inflection point occurs at }}x = 2\pi \cr & f\left( {2\pi } \right) = \sin \frac{{2\pi }}{2} = 0 \cr & {\text{Inflection point }}\left( {2\pi ,0} \right) \cr & {\text{Concave downward}}:{\text{ }}\left( {0,2\pi } \right) \cr & {\text{Concave upward}}:{\text{ }}\left( {2\pi ,4\pi } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.