Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.4 Exercises - Page 192: 10

Answer

$$ f(x)=\frac{1}{270}(-3x^{5}+40x^{3}+135x) $$ the graph is concave upward: $$ (-\infty \lt x\lt-2), (0 \lt x\lt 2) $$ the graph is concave downward : $$ (-2 \lt x \lt 0), (2 \lt x \lt \infty) . $$

Work Step by Step

$$ f(x)=\frac{1}{270}(-3x^{5}+40x^{3}+135x) $$ Begin by observing that $f$ is continuous on the entire real number line. Next, find the second derivative of $f$ $$ f^{\prime }(x)=\frac{1}{270}(-15x^{4}+120x^{2}+135) $$ $$ f^{\prime \prime }(x)=\frac{1}{270}(-60x^{3}+240x)=\frac{-2x}{9}(x-2)(x+2). $$ Because $f^{\prime \prime }(x)=0$ when $x=0 ,\pm 2$ and $f^{\prime \prime }(x)$ is defined on the entire real number line, we should test $f^{\prime \prime }(x)$ in the intervals $(-\infty , -2), (-2, 0), (0, 2)$and $(2, \infty )$The results are shown in the following table: $$ \begin{array}{|c|c|c|c|c|c|}\hline {-\infty\lt x\lt -2} & {-2\lt x\lt 0} & {0\lt x\lt 2} & {2\lt x\lt \infty} \\ \hline {y^{\prime \prime}\gt 0} & {y^{\prime \prime}\lt 0} & {y^{\prime \prime}\gt 0} & {y^{\prime \prime}\lt 0} \\ \hline {\text { Concave upward }} & {\text { Concave downward }} & {\text { Concave upward }} & {\text { Concave downward }} \\ \hline\end{array} $$ So, Concave upward: $$ (-\infty \lt x\lt-2), (0 \lt x\lt 2) $$ Concave downward: $$ (-2 \lt x \lt 0), (2 \lt x \lt \infty) . $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.