Answer
$\\y=\frac{1}{2}x+\frac{1}{2}$
Work Step by Step
$\\f(x)=\sqrt x$
$\\f(x)=x^{1/2}$
$\\f’(x)=\frac{1}{2}x^{\frac{-1}{2}}$
$\\f’(x)=\frac{1}{2\sqrt x}$
$\\f’(1)=\frac{1}{2\sqrt 1}$
$\\f’(1)=\frac{1}{2}$
Apply to straight line equation (y-y1)=m(x-x1)
$\\y-1=\frac{1}{2}(x-1)$
$\\y-1=\frac{1}{2}x-\frac{1}{2}$
$\\y=\frac{1}{2}x+\frac{1}{2}$