Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.1 Exercises - Page 103: 21

Answer

$f'(x)=\frac{-1}{(x-1)^{2}}$

Work Step by Step

$f(x)=\frac{1}{x-1}$ $f'(x)=\lim\limits_{h \to 0}\frac{\frac{1}{(x+h)-1}-\frac{1}{x-1}}{h}$ $f'(x)=\lim\limits_{h \to 0}\frac{(x-1)-((x+h)-1)}{(x-1)((x+h)-1)(h)}$ $f'(x)=\lim\limits_{h \to 0}\frac{x-1-x-h+1}{(x-1)((x+h)-1)(h)}$ $f'(x)=\lim\limits_{h \to 0}\frac{-1}{(x-1)((x+h)-1)}$ $f'(x)=\frac{-1}{(x-1)((x+0)-1)}$ $f'(x)=\frac{-1}{(x-1)^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.