Answer
$\\h'(s)=\frac{2}{3}$
Work Step by Step
$\\h(s)=3+\frac{2}{3}s$
$\\h'(s)=\lim\limits_{Δs \to 0}\frac{3+\frac{2}{3}(s+Δs)-3-\frac{2}{3}s}{Δs}$
$\\h'(s)=\lim\limits_{Δs \to 0}\frac{3+\frac{2}{3}s+\frac{2}{3}Δs-3-\frac{2}{3}s}{Δs}$
$\\h'(s)=\lim\limits_{Δs \to 0}\frac{\frac{2}{3}Δs}{Δs}$
$\\h'(s)=\lim\limits_{Δs \to 0}\frac{\frac{2}{3}Δs}{Δs}$
$\\h'(s)=\frac{2}{3}$