Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.1 Exercises - Page 103: 23

Answer

$f'(x)=\frac{1}{2(\sqrt {x+4})}$

Work Step by Step

$f(x)=\sqrt {x+4}$ $f'(x)=\lim\limits_{h \to 0}\frac{\sqrt {(x+h)+4}-\sqrt {x+4}}{h}\times\frac{\sqrt {(x+h)+4}+\sqrt {x+4}}{\sqrt {(x+h)+4}+\sqrt {x+4}}$ $f'(x)=\lim\limits_{h \to 0}\frac{x+h+4-x-4}{(h)(\sqrt {x+h+4}+\sqrt {x+4})}$ $f'(x)=\lim\limits_{h \to 0}\frac{h}{(h)(\sqrt {x+h+4}+\sqrt {x+4})}$ $f'(x)=\lim\limits_{h \to 0}\frac{1}{(\sqrt {x+h+4}+\sqrt {x+4})}$ $f'(x)=\frac{1}{(\sqrt {x+0+4}+\sqrt {x+4})}$ $f'(x)=\frac{1}{(\sqrt {x+4}+\sqrt {x+4})}$ $f'(x)=\frac{1}{2(\sqrt {x+4})}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.