Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.2 Vectors - Exercises Set 11.2 - Page 783: 38

Answer

\[ \quad k=0 \quad \text { or } \vec{v}=\overrightarrow{0} \]

Work Step by Step

Let $\vec{v}$ be a vector in $n$ -space \[ \left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=\vec{v} \] The standard of this vector is \[ \sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}=\|\vec{v}\| \] Since $a_{i}^{2} \geq 0$ for all $a_{i} \in \mathbb{R}$, we get that \[ \sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}=0 \text { iff } a_{i}=0 \text { for } i=1,2, \cdots, n \] and then \[ \|\vec{v}\|=0 \Longleftrightarrow \vec{v}=\overrightarrow{0}=\langle 0,0, \ldots, 0\rangle \] So: \[ \|k \vec{v}\|=|k|\|\vec{v}\|=0 \Rightarrow \quad k=0 \quad \text { or } \vec{v}=\overrightarrow{0} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.