Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.2 Vectors - Exercises Set 11.2 - Page 783: 34

Answer

\[ \vec{v}=\langle 7,-11\rangle \text { , } \vec{u}=\langle-5,8\rangle \]

Work Step by Step

There are equations: \[ \begin{array}{c} \vec{v}+\vec{u}=\langle 2,-3\rangle \\ 2 \vec{v}+3 \vec{u}=\langle-1,2\rangle \end{array} \] where $\vec{u}$ and $\vec{v}$ are vectors. From our first equation, we have that: \[ -\vec{u}+\langle 2,-3\rangle=\vec{v} \] \[ \begin{aligned} 2 \vec{v}+3 \vec{u}=\langle-1,2\rangle & \Rightarrow 3 \vec{u}+2(\langle 2,-3\rangle-\vec{u})=\langle-1,2\rangle \\ & \Rightarrow 3 \vec{u}+\langle 4,-6\rangle-2 \vec{u}=\langle-1,2\rangle \\ & \Rightarrow \vec{u}=-\langle 4,-6\rangle+\langle-1,2\rangle \\ & \Rightarrow \vec{u}=\langle-5,8\rangle \end{aligned} \] Since $\vec{v}=\langle 2,-3\rangle-\vec{u}$, we get: \[ \vec{v}=-\langle-5,8\rangle+\langle 2,-3\rangle=\langle 7,-11\rangle \] Finally: \[ \vec{v}=\langle 7,-11\rangle\text { , } \vec{u}=\langle-5,8\rangle \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.