Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.2 Vectors - Exercises Set 11.2 - Page 783: 22

Answer

a) $\frac{4}{5} \hat{\jmath}-\frac{3}{5} \hat{\imath}$ b) $-\frac{1}{3} \hat{\jmath}-\frac{2}{3} \hat{k}+\frac{2}{3} \hat{\imath}$ c) $-\frac{3}{5} \hat{\jmath}+\frac{4}{5} \hat{\imath}$

Work Step by Step

The unitary vector in the direction of a given vector $\vec{v}$ is \[ \vec{v} \frac{1}{\|\vec{v}\|}=\hat{v} \] a) The unitary vector in the opposite direction of $-4 \hat{\jmath}+3 \hat{\imath}=\vec{v}$ is \[ -\hat{v}=- \vec{v} \frac{1}{\|\vec{v}\|}=-\frac{1}{\sqrt{(-4)^{2}+3^{2}}}(3 \hat{\imath}-4 \hat{\jmath})=\frac{4}{5} \hat{\jmath}-\frac{3}{5} \hat{\imath} \] b) The unitary vector in the same direction of $\vec{v}=-\hat{\jmath}-2 \hat{k}+2 \hat{\imath}$ is \[ \begin{aligned} \hat{v} &=\frac{1}{\|\vec{v}\|} \vec{v}=\frac{1}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}(2 \hat{\imath}-\hat{\jmath}-2 \hat{k}) \\ &=-\frac{1}{3} \hat{\jmath}-\frac{2}{3} \hat{k}+\frac{2}{3} \hat{\imath} \end{aligned} \] $c$ Notice that \[ \vec{v}=\overrightarrow{A B}=(-1-2) \hat{\jmath}+(1-(-3)) \hat{\imath}=-3 \hat{\jmath}+4 \hat{\imath} \] and then \[ \hat{v}=\frac{1}{\|\vec{v}\|} \vec{v}=(4 \hat{\imath}-3 \hat{\jmath}) \frac{1}{\sqrt{(-3)^{2}+4^{2}}}=-\frac{3}{5} \hat{\jmath}+\frac{4}{5} \hat{\imath} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.