Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.2 Vectors - Exercises Set 11.2 - Page 783: 21

Answer

a) $\frac{4}{\sqrt{17}} \hat{\jmath}+-\frac{\hat{i}}{\sqrt{17}}$ b) $\left.-\frac{2}{\sqrt{14}} \hat{\jmath}+\frac{\hat{k}}{\sqrt{14}} \quad c+\frac{3}{\sqrt{14}} \hat{\imath}\right)\left\langle\frac{2 \sqrt{2}}{3}, \frac{\sqrt{2}}{6},-\frac{\sqrt{2}}{6}\right\rangle$

Work Step by Step

The unitary vector in the direction of a vector $\vec{u}$ is \[ \hat{u}=\vec{u} \frac{1}{\|\vec{u}\|} \] For $\vec{u}=4 \hat{\jmath}-\hat{\imath}$ we get that \[ \hat{u}=\frac{1}{\|4\hat{\jmath}- \hat{\imath}\|} \quad(4\hat{\jmath}- \hat{\imath})=\frac{1}{\sqrt{4^{2}+(-1)^{2}}}(-\hat{\imath}+4 \hat{\jmath})=\frac{4 \hat{\jmath}}{\sqrt{17}}-\frac{ \hat{\imath}}{\sqrt{17}} \] b) The unitary vector in the opposite direction of $\vec{u}=-4 \hat{\jmath}+2 \hat{k}+6 \hat{\imath}$ is \[ -\hat{u}=-\vec{u} \frac{1}{\|\vec{u}\|} =-\frac{1}{\sqrt{(-4)^{2}+2^{2}+6^{2}}},(6 \hat{\imath}-4 \hat{\jmath}+2 \hat{k})=-\frac{2}{\sqrt{14}} \hat{\jmath}+\frac{\hat{k}}{\sqrt{14}} +\frac{3}{\sqrt{14}} \hat{\imath}\] c) The vector from $A(-1,0,2)$ to the point $B(3,1,1)$ is \[ \overrightarrow{A B}=\vec{v}=\langle -(-1)+3, 1-0,-2+1\rangle=\langle 4,1,-1\rangle \] and then the unitary vector is \[ \hat{v}=\frac{\vec{v}}{\|\vec{v}\|}=\langle 4,1,-1\rangle \frac{1}{\sqrt{1^{2}+(-1)^{2}+4^{2}}}=\langle 4,1,-1\rangle \frac{1}{3 \sqrt{2}} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.