Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.2 Vectors - Exercises Set 11.2 - Page 783: 24

Answer

a) $3 \vec{v}=\vec{u}$ b) $\frac{6}{\sqrt{26}} \hat{\imath}-\frac{8}{\sqrt{26}} \hat{\jmath}-\frac{2}{\sqrt{26}} \hat{k}=\vec{u}$

Work Step by Step

a) Let $\vec{v}=-3 \hat{\jmath}+2 \hat{\imath} .$ The vector $\vec{u}$ with the same direction of $\vec{v}$ and three times the length of $\vec{v}$ is \[ \vec{u}=3 \vec{v}=(-3 \hat{\jmath}+2 \hat{\imath})3=-9 \hat{\jmath}+6 \hat{\imath} \] because $\vec{v} / / 3 \vec{v}$ and $\|3 \vec{v}\|=3\|\vec{v}\|$ $b)$ Let $\vec{v}=4 \hat{\jmath}+\hat{k}-3 \hat{\imath} .$ The unitary vector that is oppositely directed to $\vec{v}$ is \[ \begin{aligned} \hat{u} &=-\frac{1}{\|\vec{v}\|} \vec{v}=-\frac{1}{\sqrt{4^{2}+1^{2}+(-3)^{2}}}(-3 \hat{\imath}+4 \hat{\jmath}+\hat{k}) \\ &=-(-3 \hat{\imath}+4 \hat{\jmath}+\hat{k})\frac{1}{\sqrt{26}} \end{aligned} \] So the vector with length 2 in the opposite direction of $\vec{v}$ is \[ \vec{u}=2 \hat{u}=-(-3 \hat{\imath}+4 \hat{\jmath}+\hat{k}) \frac{2}{\sqrt{26}} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.