Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 199: 49

Answer

$0$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{\sin x - \sin x\cos x}}{{{x^2}}} \cr & {\text{Factor the numerator of the function}}{\text{, the GCF is }}\sin x \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x\left( {1 - \cos x} \right)}}{{{x^2}}} \cr & {\text{Split }}{x^2} \cr & = \mathop {\lim }\limits_{x \to 0} \left[ {\left( {\frac{{\sin x}}{x}} \right)\left( {\frac{{1 - \cos x}}{{{x}}}} \right)} \right] \cr & {\text{Use the product law of limits}}{\text{, the limit of a product is the }} \cr & {\text{product of the limits}}{\text{, then}} \cr & = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin x}}{x}} \right)\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \cos x}}{x}} \right) \cr & {\text{Use the special limits }}\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin x}}{x}} \right) = 1{\text{ and }}\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \cos x}}{x}} \right) = 0 \cr & = \left( 1 \right)\left( 0 \right) \cr & = 0 \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{\sin x - \sin x\cos x}}{{{x^2}}} = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.