Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 198: 47

Answer

$3$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{t \to 0} \frac{{\sin 3t}}{{\sin t}} \cr & {\text{First rewrite the function by multiplying and dividing by }}3t \cr & \frac{{\sin 3t}}{{\sin t}} = \frac{{\sin 3t}}{{\sin t}} \times \frac{{3t}}{{3t}} \cr & \frac{{\sin 3t}}{{\sin t}} = \left( {\frac{{\sin 3t}}{{3t}}} \right)\left( {\frac{{3t}}{{\sin t}}} \right) \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{t \to 0} \frac{{\sin 3t}}{{\sin t}} = \mathop {\lim }\limits_{t \to 0} \left[ {\left( {\frac{{\sin 3t}}{{3t}}} \right)\left( {\frac{{3t}}{{\sin t}}} \right)} \right] \cr & {\text{Use the product law of limits}}{\text{, the limit of a product is the }} \cr & {\text{product of the limits}}{\text{, then}} \cr & = \mathop {\lim }\limits_{t \to 0} \left( {\frac{{\sin 3t}}{{3t}}} \right)\mathop {\lim }\limits_{t \to 0} \left( {\frac{{3t}}{{\sin t}}} \right) \cr & = 3\mathop {\lim }\limits_{t \to 0} \left( {\frac{{\sin 3t}}{{3t}}} \right)\mathop {\lim }\limits_{t \to 0} \left( {\frac{t}{{\sin t}}} \right) \cr & = 3\mathop {\lim }\limits_{t \to 0} \left( {\frac{{\sin 3t}}{{3t}}} \right)\mathop {\lim }\limits_{t \to 0} {\left( {\frac{{\sin t}}{t}} \right)^{ - 1}} \cr & {\text{Use the power law of limits }}\mathop {\lim }\limits_{x \to a} {\left[ {f\left( x \right)} \right]^n} = {\left[ {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right]^n} \cr & = 3\mathop {\lim }\limits_{t \to 0} \left( {\frac{{\sin 3t}}{{3t}}} \right){\left[ {\mathop {\lim }\limits_{t \to 0} \left( {\frac{{\sin t}}{t}} \right)} \right]^{ - 1}} \cr & {\text{Letting }}\theta = 3t,{\text{ then }}\theta \to 0{\text{ as }}x \to 0,{\text{ so by }}\mathop {\lim }\limits_{\theta \to 0} \frac{{\sin \theta }}{\theta } = 1 \cr & = 3\overbrace {\mathop {\lim }\limits_{t \to 0} \left( {\frac{{\sin 3t}}{{3t}}} \right)}^{\theta = 3t,{\text{ }}\mathop {\lim }\limits_{\theta \to 0} \frac{{\sin \theta }}{\theta } = 1}\overbrace {{{\left[ {\mathop {\lim }\limits_{t \to 0} \left( {\frac{{\sin t}}{t}} \right)} \right]}^{ - 1}}}^{{1^{ - 1}}} \cr & = 3\left( 1 \right)\left( 1 \right) \cr & = 3 \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{t \to 0} \frac{{\sin 3t}}{{\sin t}} = 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.