Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 199: 51

Answer

$2$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{\tan 2x}}{x} \cr & = \mathop {\lim }\limits_{x \to 0} \left[ {\tan 2x\left( {\frac{1}{x}} \right)} \right] \cr & {\text{Use the quotient identity tan}}\theta = \frac{{\sin \theta }}{{\cos \theta }} \cr & = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\sin 2x}}{{\cos 2x}}\left( {\frac{1}{x}} \right)} \right] \cr & = \mathop {\lim }\limits_{x \to 0} \left[ {\left( {\frac{{\sin 2x}}{x}} \right)\left( {\frac{1}{{\cos 2x}}} \right)} \right] \cr & {\text{Multiplying and dividing by }}2 \cr & = \mathop {\lim }\limits_{x \to 0} \left[ {\left( {\frac{{\sin 2x}}{{2x}}} \right)\left( {\frac{2}{{\cos 2x}}} \right)} \right] \cr & {\text{Use the product law of limits}}{\text{, the limit of a product is the }} \cr & {\text{product of the limits}}{\text{, then}} \cr & = \left( {\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{{2x}}} \right)\mathop {\lim }\limits_{x \to 0} \left( {\frac{2}{{\cos 2x}}} \right) \cr & {\text{Letting }}\theta = 2x,{\text{ then }}\theta \to 0{\text{ as }}x \to 0,{\text{ so by }}\mathop {\lim }\limits_{\theta \to 0} \frac{{\sin \theta }}{\theta } = 1 \cr & = \overbrace {\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{{2x}}}^{\theta = 2x,{\text{ }}\mathop {\lim }\limits_{\theta \to 0} \frac{{\sin \theta }}{\theta } = 1}\left[ {\mathop {\lim }\limits_{x \to 0} \left( {\frac{2}{{\cos 2x}}} \right)} \right] \cr & = \left( 1 \right)\left[ {\frac{2}{{\cos 2\left( 0 \right)}}} \right] \cr & = \left( 1 \right)\left( {\frac{2}{1}} \right) \cr & = 2 \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{\tan 2x}}{x} = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.