Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 199: 59

Answer

$$\lim\limits_{x\to\pi/4}\frac{1-\tan x}{\sin x-\cos x}=-\sqrt 2$$

Work Step by Step

$$A=\lim\limits_{x\to\pi/4}\frac{1-\tan x}{\sin x-\cos x}$$ $$A=\lim\limits_{x\to\pi/4}\frac{1-\frac{\sin x}{\cos x}}{\sin x-\cos x}$$ $$A=\lim\limits_{x\to\pi/4}\frac{\frac{\cos x-\sin x}{\cos x}}{\sin x-\cos x}$$ $$A=\lim\limits_{x\to\pi/4}\frac{\cos x-\sin x}{\cos x(\sin x-\cos x)}$$ $$A=\lim\limits_{x\to\pi/4}\frac{-(\sin x-\cos x)}{\cos x(\sin x-\cos x)}$$ $$A=\lim\limits_{x\to\pi/4}\frac{-1}{\cos x}$$ $$A=\frac{-1}{\cos(\pi/4)}$$ $$A=\frac{-1}{\frac{\sqrt 2}{2}}$$ $$A=\frac{-2}{\sqrt 2}=-\sqrt 2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.