Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 199: 60

Answer

$$\lim\limits_{x\to1}\frac{\sin(x-1)}{x^2+x-2}=\frac{1}{3}$$

Work Step by Step

$$A=\lim\limits_{x\to1}\frac{\sin(x-1)}{x^2+x-2}$$$$A=\lim\limits_{x\to1}\frac{\sin(x-1)}{(x-1)(x+2)}$$ $$A=\lim\limits_{x\to1}\frac{\sin(x-1)}{x-1}\times\lim\limits_{x\to1}\frac{1}{x+2}$$ Let $x-1=\theta$. Since $x\to 1$ is considered, $(x-1)\to0$, so $\theta\to0$ also. $$A=\lim\limits_{\theta\to0}\frac{\sin\theta}{\theta}\times\lim\limits_{x\to1}\frac{1}{x+2}$$ $$A=1\times\frac{1}{1+2}=\frac{1}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.