Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 199: 52

Answer

$\frac{1}{7}$

Work Step by Step

$\lim\limits_{\theta \to 0}\frac{\sin \theta}{\tan 7\theta}=\lim\limits_{\theta \to 0}\frac{1}{7}\cdot \frac{\sin \theta}{\theta}\cdot \frac{7\theta}{\tan 7\theta}$ (Use the properties of limits) $=\frac{1}{7}\lim\limits_{\theta \to 0}\frac{\sin \theta}{\theta}\cdot \lim\limits_{\theta \to 0}\frac{7\theta}{\tan 7\theta}$ (As $\theta\rightarrow 0$, $7\theta\rightarrow 0$) $=\frac{1}{7}\lim\limits_{\theta \to 0}\frac{\sin \theta}{\theta}\cdot \lim\limits_{7\theta \to 0}\frac{7\theta}{\tan 7\theta}$ $=\frac{1}{7}\cdot 1\cdot 1$ $=\frac{1}{7}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.