Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 198: 48

Answer

$0$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{{{\sin }^2}3x}}{x} \cr & {\text{Rewrite }}{\sin ^2}3x{\text{ as }}\left( {\sin 3x} \right)\left( {\sin 3x} \right) \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sin 3x} \right)\left( {\sin 3x} \right)}}{x} \cr & = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin 3x}}{x}} \right)\left( {\sin 3x} \right) \cr & {\text{Multiplying and dividing by }}3 \cr & = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin 3x}}{{3x}}} \right)\left( {3\sin 3x} \right) \cr & {\text{Use the product law of limits}}{\text{, the limit of a product is the }} \cr & {\text{product of the limits}}{\text{, then}} \cr & = \left( {\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{3x}}} \right)\mathop {\lim }\limits_{x \to 0} \left( {3\sin 3x} \right) \cr & {\text{Letting }}\theta = 3x,{\text{ then }}\theta \to 0{\text{ as }}x \to 0,{\text{ so by }}\mathop {\lim }\limits_{\theta \to 0} \frac{{\sin \theta }}{\theta } = 1 \cr & = 3\overbrace {\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{3x}}}^{\theta = 3x,{\text{ }}\mathop {\lim }\limits_{\theta \to 0} \frac{{\sin \theta }}{\theta } = 1}\left[ {\mathop {\lim }\limits_{x \to 0} \left( {3\sin 3x} \right)} \right] \cr & = 3\left( 1 \right)\left[ {3\left( {\sin 3\left( 0 \right)} \right)} \right] \cr & = 3\left( 1 \right)\left( 0 \right) \cr & = 0 \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{{{\sin }^2}3x}}{x} = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.