Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 198: 35

Answer

$f''\left( \theta \right) = \frac{{2\sin \theta - {\theta ^2}\sin \theta - 2\theta \cos \theta }}{{{\theta ^3}}}$

Work Step by Step

$$\eqalign{ & f\left( \theta \right) = \frac{{\sin \theta }}{\theta } \cr & {\text{Differentiate }}f\left( \theta \right){\text{ to find }}f'\left( \theta \right) \cr & f'\left( \theta \right) = \frac{d}{{d\theta }}\left[ {\frac{{\sin \theta }}{\theta }} \right] \cr & {\text{Use the quotient rule}} \cr & f'\left( \theta \right) = \frac{{\theta \frac{d}{{d\theta }}\left[ {\sin \theta } \right] - \sin \theta \frac{d}{{d\theta }}\left[ \theta \right]}}{{{\theta ^2}}} \cr & f'\left( \theta \right) = \frac{{\theta \cos \theta - \sin \theta }}{{{\theta ^2}}} \cr & \cr & {\text{Differentiate }}f'\left( \theta \right){\text{ to find }}f''\left( \theta \right) \cr & f''\left( \theta \right) = \frac{d}{{d\theta }}\left[ {\frac{{\theta \cos \theta - \sin \theta }}{{{\theta ^2}}}} \right] \cr & {\text{Use the quotient rule}} \cr & f''\left( \theta \right) = \frac{{{\theta ^2}\frac{d}{{d\theta }}\left[ {\theta \cos \theta - \sin \theta } \right] - \left( {\theta \cos \theta - \sin \theta } \right)\frac{d}{{d\theta }}\left[ {{\theta ^2}} \right]}}{{{{\left( {{\theta ^2}} \right)}^2}}} \cr & {\text{Use the product rule for }}\frac{d}{{d\theta }}\left[ {\theta \cos \theta } \right] \cr & f''\left( \theta \right) = \frac{{{\theta ^2}\left[ {\theta \left( { - \sin \theta } \right) + \cos \theta - \cos \theta } \right] - \left( {\theta \cos \theta - \sin \theta } \right)\left( {2\theta } \right)}}{{{\theta ^4}}} \cr & {\text{Simplify}} \cr & f''\left( \theta \right) = \frac{{{\theta ^2}\left( { - \sin \theta } \right) - 2\theta \cos \theta + 2\sin \theta }}{{{\theta ^3}}} \cr & f''\left( \theta \right) = \frac{{2\sin \theta - {\theta ^2}\sin \theta - 2\theta \cos \theta }}{{{\theta ^3}}} \cr & \cr & {\text{Summary}} \cr & f'\left( \theta \right) = \frac{{\theta \cos \theta - \sin \theta }}{{{\theta ^2}}}{\text{ }} \cr & {\text{and }} \cr & f''\left( \theta \right) = \frac{{2\sin \theta - {\theta ^2}\sin \theta - 2\theta \cos \theta }}{{{\theta ^3}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.