Answer
See image.
a) $f'(x)=(e^x)\frac{1}{dx}\cos(x)+e^x(\cos(x))\frac{1}{dx}$
$=e^x\cos(x)-e^x\sin(x)$
$f''(x)=e^x\cos(x)-e^x\sin(x)-e^x\sin(x)-e^x\cos(x)=-2e^x\sin(x)$
b) The x value of the maximum point on $f(x)$ is an x intercept of $f'(x)$ and the x value of the maximum point on $f'(x)$ is an x intercept of $f''(x)$, so the derivatives are reasonable
Work Step by Step
a) $f'(x)=(e^x)\frac{1}{dx}\cos(x)+e^x(\cos(x))\frac{1}{dx}$
$=e^x\cos(x)-e^x\sin(x)$
$f''(x)=e^x\cos(x)-e^x\sin(x)-e^x\sin(x)-e^x\cos(x)=-2e^x\sin(x)$
b) The x value of the maximum point on $f(x)$ is an x intercept of $f'(x)$ and the x value of the maximum point on $f'(x)$ is an x intercept of $f''(x)$, so the derivatives are reasonable