Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 198: 30

Answer

$y=x-\pi-1$

Work Step by Step

Given: $y=\frac{1+\sin x}{\cos x}$ $y=\frac{1}{\cos x}+\frac{\sin x}{\cos x}$ $y=\sec x+\tan x$ Find the slope of the tangent line to the curve at $x=\pi$: $\frac{dy}{dx}=\frac{d}{dx}(\sec x+\tan x)$ $\frac{dy}{dx}=\frac{d}{dx}(\sec x)+\frac{d}{dx}(\tan x)$ $\frac{dy}{dx}=\sec x\tan x+\sec^2 x$ $m=\frac{dy}{dx}|_{x=\pi}$ $m=\sec \pi\tan\pi+\sec^2\pi$ $m=-1\cdot 0+(-1)^2$ $m=0+1$ $m=1$ Find the equation of the tangent line: $y-(-1)=1(x-\pi)$ $y+1=x-\pi$ $y=x-\pi-1$ Thus, the tangent line has the equation $y=x-\pi-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.