Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 197: 9

Answer

$$f'\left( \theta \right) = \theta \cos \theta - {\cos ^2}\theta + \sin \theta + {\sin ^2}\theta $$

Work Step by Step

$$\eqalign{ & f\left( \theta \right) = \left( {\theta - \cos \theta } \right)\sin \theta \cr & {\text{Differentiating}} \cr & f'\left( \theta \right) = \frac{d}{{d\theta }}\left[ {\left( {\theta - \cos \theta } \right)\sin \theta } \right] \cr & {\text{Use the product rule for derivatives }}\left( {hg} \right)' = hg' + gh' \cr & {\text{Let }}h = \left( {\theta - \cos \theta } \right){\text{ and }}g = \sin \theta ,{\text{ then}} \cr & f'\left( \theta \right) = \left( {\theta - \cos \theta } \right)\frac{d}{{d\theta }}\left[ {\sin \theta } \right] + \sin \theta \frac{d}{{d\theta }}\left[ {\theta - \cos \theta } \right] \cr & {\text{Use the Derivatives of Trigonometric Functions }} \cr & f'\left( \theta \right) = \left( {\theta - \cos \theta } \right)\left( {\cos \theta } \right) + \sin \theta \left[ {1 - \left( { - \sin \theta } \right)} \right] \cr & {\text{Simplify}} \cr & f'\left( \theta \right) = \left( {\theta - \cos \theta } \right)\left( {\cos \theta } \right) + \sin \theta \left( {1 + \sin \theta } \right) \cr & f'\left( \theta \right) = \theta \cos \theta - {\cos ^2}\theta + \sin \theta + {\sin ^2}\theta \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.