Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 197: 11

Answer

$H'\left( t \right) = - \sin 2t$

Work Step by Step

$$\eqalign{ & H\left( t \right) = {\cos ^2}t \cr & {\text{Rewrite the function }} \cr & H\left( t \right) = \left( {\cos t} \right)\left( {\cos t} \right) \cr & {\text{Differentiating}} \cr & H'\left( t \right) = \frac{d}{{dt}}\left[ {\left( {\cos t} \right)\left( {\cos t} \right)} \right] \cr & {\text{Use the product rule}} \cr & H'\left( t \right) = \cos t\frac{d}{{dt}}\left[ {\cos t} \right] + \cos t\frac{d}{{dt}}\left[ {\cos t} \right] \cr & H'\left( t \right) = 2\cos t\frac{d}{{dt}}\left[ {\cos t} \right] \cr & {\text{Use the Derivative formula }}\frac{d}{{dx}}\left[ {\cos x} \right] = - \sin x{\text{ }} \cr & H'\left( t \right) = 2\cos t\left( { - \sin t} \right) \cr & H'\left( t \right) = - 2\sin t\cos t \cr &H'\left( t \right) = -\sin 2t} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.