Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 197: 12

Answer

$f'\left( x \right) = {e^x}\cos x + {e^x}\sin x - \sin x$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {e^x}\sin x + \cos x \cr & {\text{Differentiating}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{e^x}\sin x} \right] + \frac{d}{{dx}}\left[ {\cos x} \right] \cr & {\text{Use the product rule for derivatives }}\left( {gh} \right)' = gh' + hg' \cr & {\text{Let }}g = {e^x}{\text{ and }}h = \sin x,{\text{ then}} \cr & f'\left( x \right) = {e^x}\frac{d}{{dx}}\left[ {\sin x} \right] + \sin x\frac{d}{{dx}}\left[ {{e^x}} \right] + \frac{d}{{dx}}\left[ {\cos x} \right] \cr & {\text{Use the Derivatives of Trigonometric Functions }} \cr & {\text{and }}\frac{d}{{dx}}\left[ {{e^x}} \right] = {e^x},{\text{ then}} \cr & f'\left( x \right) = {e^x}\left( {\cos x} \right) + \sin x\left( {{e^x}} \right) + \left( { - \sin x} \right) \cr & {\text{Simplifying}} \cr & f'\left( x \right) = {e^x}\cos x + {e^x}\sin x - \sin x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.