Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 197: 2

Answer

$f'\left( x \right) = {\sec ^2}x - 4\cos x$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \tan x - 4\sin x \cr & {\text{Differentiating}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\tan x - 4\sin x} \right] \cr & {\text{Use the difference rule for derivatives }} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\tan x} \right] - \frac{d}{{dx}}\left[ {4\sin x} \right] \cr & {\text{Pull out the constant 4}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\tan x} \right] - 4\frac{d}{{dx}}\left[ {\sin x} \right] \cr & {\text{Use the Derivatives of Trigonometric Functions }} \cr & f'\left( x \right) = {\sec ^2}x - 4\left( {\cos x} \right) \cr & {\text{Simplify}} \cr & f'\left( x \right) = {\sec ^2}x - 4\cos x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.