Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 197: 5

Answer

$h'\left( \theta \right) = {\theta ^2}\cos \theta + 2\theta \sin \theta $

Work Step by Step

$$\eqalign{ & h\left( \theta \right) = {\theta ^2}\sin \theta \cr & {\text{Differentiating}} \cr & h'\left( \theta \right) = \frac{d}{{d\theta }}\left[ {{\theta ^2}\sin \theta } \right] \cr & {\text{Use the product rule for derivatives }}\left( {fg} \right)' = fg' + gf' \cr & {\text{Let }}f = {\theta ^2}{\text{ and }}g = \sin \theta ,{\text{ then}} \cr & h'\left( \theta \right) = {\theta ^2}\left( {\sin \theta } \right)' + \sin \theta \left( {{\theta ^2}} \right)' \cr & {\text{Use the Derivatives of Trigonometric Functions }} \cr & {\text{and }}\frac{d}{{d\theta }}\left[ {{\theta ^n}} \right] = n{\theta ^{n - 1}},{\text{ then}} \cr & h'\left( \theta \right) = {\theta ^2}\left( {\cos \theta } \right) + \sin \theta \left( {2\theta } \right) \cr & {\text{Simplify}} \cr & h'\left( \theta \right) = {\theta ^2}\cos \theta + 2\theta \sin \theta \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.