Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 197: 20

Answer

$g'\left( z \right) = \frac{{\sec z + \tan z - z\sec z\tan z - z{{\sec }^2}z}}{{{{\left( {\sec z + \tan z} \right)}^2}}}$

Work Step by Step

$$\eqalign{ & g\left( z \right) = \frac{z}{{\sec z + \tan z}} \cr & {\text{Differentiating}} \cr & g'\left( z \right) = \frac{d}{{dz}}\left[ {\frac{z}{{\sec z + \tan z}}} \right] \cr & {\text{Use the quotient rule for derivatives }}\left( {\frac{f}{h}} \right)' = \frac{{hf' - fh'}}{{{h^2}}} \cr & {\text{Let }}f = z{\text{ and }}h = \sec z + \tan z,{\text{ then}} \cr & g'\left( z \right) = \frac{{\left( {\sec z + \tan z} \right)\left( z \right)' - z\left( {\sec z + \tan z} \right)'}}{{{{\left( {\sec z + \tan z} \right)}^2}}} \cr & {\text{Use the Derivatives of Trigonometric Functions }} \cr & g'\left( z \right) = \frac{{\left( {\sec z + \tan z} \right)\left( 1 \right) - z\left( {\sec z\tan z + {{\sec }^2}z} \right)}}{{{{\left( {\sec z + \tan z} \right)}^2}}} \cr & {\text{Multiply and simplify}} \cr & g'\left( z \right) = \frac{{\sec z + \tan z - z\sec z\tan z - z{{\sec }^2}z}}{{{{\left( {\sec z + \tan z} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.