Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 197: 6

Answer

$g'\left( x \right) = 3 - {x^2}\sin x + 2x\cos x$

Work Step by Step

$$\eqalign{ & g\left( x \right) = 3x + {x^2}\cos x \cr & {\text{Differentiating}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {3x + {x^2}\cos x} \right] \cr & {\text{Use sum rule for derivatives}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {3x} \right] + \frac{d}{{dx}}\left[ {{x^2}\cos x} \right] \cr & g'\left( x \right) = 3\frac{d}{{dx}}\left[ x \right] + \frac{d}{{dx}}\left[ {{x^2}\cos x} \right] \cr & {\text{for }}\frac{d}{{dx}}\left[ {{x^2}\cos x} \right]{\text{ use the product rule for derivatives}} \cr & g'\left( x \right) = 3\frac{d}{{dx}}\left[ x \right] + {x^2}\frac{d}{{dx}}\left[ {\cos x} \right] + \cos x\frac{d}{{dx}}\left[ {{x^2}} \right] \cr & {\text{Use the Derivatives of Trigonometric Functions and}} \cr & {\text{the basic rules for derivatives }}\frac{d}{{dx}}\left[ x \right] = 1,{\text{ }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}} \cr & g'\left( x \right) = 3\left( 1 \right) + {x^2}\left( { - \sin x} \right) + \cos x\left( {2x} \right) \cr & {\text{Simplify}} \cr & g'\left( x \right) = 3 - {x^2}\sin x + 2x\cos x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.