Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.10 - Linear Approximations and Differentials. - 3.10 Exercises - Page 259: 36

Answer

$cos~29^{\circ} \approx 0.87475$

Work Step by Step

Let $y = cos~x$ $\frac{dy}{dx} = -sin~x$ $dy = (-sin~x)~dx$ We can express $29^{\circ}$ in units of radians: $29^{\circ} = (\frac{\pi}{6}-\frac{\pi}{180})~rad$ Let $x = \frac{\pi}{6}$ and let $dx = -\frac{\pi}{180}$ $dy = (-sin~\frac{\pi}{6})~(-\frac{\pi}{180})$ $dy = (\frac{1}{2})~(\frac{\pi}{180})$ $dy = \frac{\pi}{360}$ We can find an approximation for $cos~29^{\circ} = cos~(\frac{\pi}{6}-\frac{\pi}{180})$ $cos~29^{\circ} \approx cos(\frac{\pi}{6}) +\frac{\pi}{360}$ $cos~29^{\circ} \approx \frac{\sqrt{3}}{2}+\frac{\pi}{360}$ $cos~29^{\circ} \approx 0.87475$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.