Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.10 - Linear Approximations and Differentials. - 3.10 Exercises - Page 259: 13

Answer

(a) $dy = \frac{sec^2~\sqrt{t}}{2~\sqrt{t}}~dt$ (b) $dy = \frac{-4v}{(1+v^2)^2}~dv$

Work Step by Step

(a) $y = tan~\sqrt{t}$ $\frac{dy}{dt} = sec^2~\sqrt{t}\cdot \frac{1}{2}t^{-1/2}$ $\frac{dy}{dt} = \frac{sec^2~\sqrt{t}}{2~\sqrt{t}}$ $dy = \frac{sec^2~\sqrt{t}}{2~\sqrt{t}}~dt$ (b) $y = \frac{1-v^2}{1+v^2}$ $\frac{dy}{dv} = \frac{(-2v)(1+v^2)-(2v)(1-v^2)}{(1+v^2)^2}$ $\frac{dy}{dv} = \frac{-2v-2v^3-2v+2v^3}{(1+v^2)^2}$ $\frac{dy}{dv} = \frac{-4v}{(1+v^2)^2}$ $dy = \frac{-4v}{(1+v^2)^2}~dv$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.