Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.10 - Linear Approximations and Differentials. - 3.10 Exercises - Page 259: 15

Answer

$dy = - \frac{{2x - 3}}{{{{\left( {{x^2} - 3x} \right)}^2}}}dx$

Work Step by Step

$$\eqalign{ & y = \frac{1}{{{x^2} - 3x}} \cr & {\text{Rewrite the function}} \cr & y = {\left( {{x^2} - 3x} \right)^{ - 1}} \cr & {\text{Differentiate the function }} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\left( {{x^2} - 3x} \right)}^{ - 1}}} \right] \cr & {\text{Use the general power rule for derivatives}} \cr & \frac{{dy}}{{dx}} = - {\left( {{x^2} - 3x} \right)^{ - 2}}\frac{d}{{dx}}\left[ {{x^2} - 3x} \right] \cr & \frac{{dy}}{{dx}} = - {\left( {{x^2} - 3x} \right)^{ - 2}}\left( {2x - 3} \right) \cr & \frac{{dy}}{{dx}} = - \frac{{2x - 3}}{{{{\left( {{x^2} - 3x} \right)}^2}}} \cr & {\text{Write in the differential form }}dy = f'\left( x \right)dx \cr & dy = - \frac{{2x - 3}}{{{{\left( {{x^2} - 3x} \right)}^2}}}dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.