Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.10 - Linear Approximations and Differentials. - 3.10 Exercises - Page 259: 18

Answer

$dy = \frac{1}{{{{\left( {1 - {e^x}} \right)}^2}}}dx$

Work Step by Step

$$\eqalign{ & y = \frac{{{e^x}}}{{1 - {e^x}}} \cr & {\text{Differentiate the function }} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\frac{{{e^x}}}{{1 - {e^x}}}} \right] \cr & {\text{Use the quotient rule for derivatives}} \cr & \frac{{dy}}{{dx}} = \frac{{\left( {1 - {e^x}} \right)\frac{d}{{dx}}\left[ {{e^x}} \right] - {e^x}\frac{d}{{dx}}\left[ {1 - {e^x}} \right]}}{{{{\left( {1 - {e^x}} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{{\left( {1 - {e^x}} \right)\left( {{e^x}} \right) - {e^x}\left( { - {e^x}} \right)}}{{{{\left( {1 - {e^x}} \right)}^2}}} \cr & {\text{Simplifying}} \cr & \frac{{dy}}{{dx}} = \frac{{1 - {e^{2x}} + {e^{2x}}}}{{{{\left( {1 - {e^x}} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{{{\left( {1 - {e^x}} \right)}^2}}} \cr & {\text{Write in the differential form }}dy = f'\left( x \right)dx \cr & dy = \frac{1}{{{{\left( {1 - {e^x}} \right)}^2}}}dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.