Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.10 - Linear Approximations and Differentials. - 3.10 Exercises - Page 259: 16

Answer

$dy = - \frac{{\sin \theta }}{{2\sqrt {1 + \cos \theta } }}d\theta $

Work Step by Step

$$\eqalign{ & y = \sqrt {1 + \cos \theta } \cr & {\text{Rewrite the function}} \cr & y = {\left( {1 + \cos \theta } \right)^{1/2}} \cr & {\text{Differentiate the function }} \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {{{\left( {1 + \cos \theta } \right)}^{1/2}}} \right] \cr & {\text{Use the chain rule for derivatives}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{2}{\left( {1 + \cos \theta } \right)^{ - 1/2}}\frac{d}{{d\theta }}\left[ {1 + \cos \theta } \right] \cr & \frac{{dy}}{{d\theta }} = \frac{1}{2}{\left( {1 + \cos \theta } \right)^{ - 1/2}}\left( { - \sin \theta } \right) \cr & \frac{{dy}}{{d\theta }} = - \frac{{\sin \theta }}{{2{{\left( {1 + \cos \theta } \right)}^{1/2}}}} \cr & \frac{{dy}}{{d\theta }} = - \frac{{\sin \theta }}{{2\sqrt {1 + \cos \theta } }} \cr & {\text{Write in the differential form }}dy = f'\left( \theta \right)d\theta \cr & dy = - \frac{{\sin \theta }}{{2\sqrt {1 + \cos \theta } }}d\theta \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.