Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.10 - Linear Approximations and Differentials. - 3.10 Exercises - Page 259: 14

Answer

(a) $dy = (cot~\theta)~d\theta$ (b) $dy = \frac{e^x}{(1-e^x)^2}~dx$

Work Step by Step

(a) $y = ln~(sin~\theta)$ $\frac{dy}{d\theta} = \frac{1}{sin~\theta}\cdot~(cos~\theta)$ $\frac{dy}{d\theta} = \frac{cos~\theta}{sin~\theta}$ $\frac{dy}{d\theta} = cot~\theta$ $dy = (cot~\theta)~d\theta$ (b) $y = \frac{e^x}{1-e^x}$ $\frac{dy}{dx} = \frac{(e^x)(1-e^x)-(e^x)(-e^x)}{(1-e^x)^2}$ $\frac{dy}{dx} = \frac{e^x-e^{2x}+e^{2x}}{(1-e^x)^2}$ $\frac{dy}{dx} = \frac{e^x}{(1-e^x)^2}$ $dy = \frac{e^x}{(1-e^x)^2}~dx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.