Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Review - Exercises - Page 69: 35

Answer

$x=\pm \frac{1}{\sqrt{3}}$ or $x\approx \pm 0. 557$

Work Step by Step

$\tan^{-1}(3x^2)=\frac{\pi}{4}$ (Use the property $\tan^{-1}(x)=y\Leftrightarrow x=\tan (y)$) $3x^2=\tan\frac{\pi}{4}$ $3x^2=1$ (Divide by 3) $x^2=\frac{1}{3}$ $x=\pm \frac{1}{\sqrt{3}}$ $x=\pm 0.57735...$ $x\approx \pm 0.577$ Thus, $x=\pm \frac{1}{\sqrt{3}}$ or $x\approx \pm 0. 557$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.