Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Review - Exercises - Page 69: 27

Answer

(a) $\ln x+\frac{1}{2}\ln (x+1)$ (b) $\frac{1}{2}\log_2(x^2+1)-\frac{1}{2}\log_2(x-1)$

Work Step by Step

Part (a) $\ln x\sqrt{x+1}=\ln x+\ln \sqrt{x+1}$ (By the property $\ln (ab)=\ln(a)+\ln(b)$) $=\ln x+\ln (x+1)^{1/2}$ $=\ln x+\frac{1}{2}\ln (x+1)$ (By the property $\ln (a^m)=m\ln (a)$) Part (b) $\log_2\sqrt{\frac{x^2+1}{x-1}}=\log_2\left(\frac{x^2+1}{x-1}\right)^{1/2}$ $=\frac{1}{2}\log_2\left(\frac{x^2+1}{x-1}\right)$ (By the property $\log_c (a^m)=m\log_c a$) $=\frac{1}{2}(\log_2(x^2+1)-\log_2(x-1))$ (By the property $\log_c\frac{a}{b}=\log_c a-\log_c b$) $=\frac{1}{2}\log_2(x^2+1)-\frac{1}{2}\log_2(x-1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.